Stability and dispersion analysis of improved time discretization for simply supported prestressed Timoshenko systems. Application to the stiff piano string. - Archive ouverte HAL Access content directly
Journal Articles Wave Motion Year : 2012

Stability and dispersion analysis of improved time discretization for simply supported prestressed Timoshenko systems. Application to the stiff piano string.

(1) , (2)
1
2

Abstract

We study the implicit time discretization of piano strings governing equations within the Timoshenko prestressed beam model. Such model features two different waves, namely the flexural and shear waves, that propagate with very different velocities. We present a novel implicit time discretization that reduces the numerical dispersion while allowing the use of a large time step in the numerical computations. After analyzing the continuous system and the two branches of eigenfrequencies associated with the propagating mode{s}, the classical $\theta$-scheme is studied. We present complete {new} proofs of stability using energy-based approaches that provide uniform results with respect to the featured time step. A dispersion analysis confirms that theta=1/12 reduces the numerical dispersion, but yields a severely constrained stability condition for the application considered. Therefore we propose a new theta-like scheme, which allows to reduce the numerical dispersion while relaxing this stability condition. Stability proofs are also provided for this new scheme. Theoretical results are illustrated with numerical experiments corresponding to the simulation of a realistic piano string.
Nous étudions la discrétisation implicite en temps des équations permettant de modéliser les cordes de piano, grâce au modéle de poutre précontrainte de Timoshenko. Ce modéle considére la propagation de deux ondes (de flexion et de cisaillement) à des vitesses très différentes. Nous présentons une nouvelle discrétisation en temps implicite qui permet de réduire la dispersion numérique tout en autorisant un grand pas de temps lors des simulations numériques. Après avoir analysé le système continu et ses deux branches de fréquences propres, associées à des modes propres, le theta-schéma classique est étudié. Nous présentons des preuves nouvelles de stabilité, basées sur une approche énergétique et qui fournissent des estimations uniformes par rapport au pas de temps. Une analyse de dispersion confirme que la valeur theta = 1/12 réduit la dispersion numériques, mais conduit à une condition de stabilité très sévère pour l'application considérée. Nous proposons donc un nouveau schéma de type theta-schéma, qui permet de réduire la dispersion numérique tout en relaxant la restriction sur le pas de temps. Des preuves de stabilité sont également fournies pour ce nouveau schéma. Les résultats théoriques sont illustrés par des expériences numériques correspondant à la simulation d'une corde de piano réaliste.
Fichier principal
Vignette du fichier
TimoshenkoTheta_SUBMITTED_2.pdf (397.8 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-00757096 , version 1 (15-10-2013)

Identifiers

Cite

Juliette Chabassier, Sébastien Imperiale. Stability and dispersion analysis of improved time discretization for simply supported prestressed Timoshenko systems. Application to the stiff piano string.. Wave Motion, 2012, 50 (3), pp.456-480. ⟨10.1016/j.wavemoti.2012.11.002⟩. ⟨hal-00757096⟩
181 View
247 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More