Exploiting Semantic Content for Singing Voice Detection

Abstract : In this paper we propose a method for singing voice detection in popular music recordings. The method is based on statistical learning of spectral features extracted from the audio tracks. In our method we use Mel Frequency Cepstrum Coefficients (MFCC) to train two Gaussian Mixture Models (GMM). Special attention is brought to our novel approach for smoothing the errors produced by the automatic classification by exploiting semantic content from the songs, which will significantly boost the overall performance of the system.
Type de document :
Communication dans un congrès
Sixth IEEE International Conference on Semantic Computing (IEEE ICSC2012), Sep 2012, Parlemo, Italy. 2012
Liste complète des métadonnées

Littérature citée [9 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00759923
Contributeur : Jean-Luc Rouas <>
Soumis le : lundi 3 décembre 2012 - 10:52:48
Dernière modification le : jeudi 11 janvier 2018 - 06:20:16
Document(s) archivé(s) le : lundi 4 mars 2013 - 03:45:55

Fichier

2012_Ioannidis.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00759923, version 1

Collections

Citation

Leonidas Ioannidis, Jean-Luc Rouas. Exploiting Semantic Content for Singing Voice Detection. Sixth IEEE International Conference on Semantic Computing (IEEE ICSC2012), Sep 2012, Parlemo, Italy. 2012. 〈hal-00759923〉

Partager

Métriques

Consultations de la notice

126

Téléchargements de fichiers

135