Real Time Context-Independent Phone Recognition Using a Simplified Statistical Training Algorithm

Abstract : In this paper we present our own real time speaker-independent continuous phone recognition (Spirit) using Context-Independent Continuous Density HMMs (CI-CDHMMs) modeled by Gaussian Mixtures Models (GMMs). All the parameters of our system are estimated directly from data by using an improved Viterbi alignment process instead of the classical Baum-Welch estimation procedure. Generally, in the literature the Viterbi training algorithm is used as a pretreatment to initialize HMMs models that will be most often re-estimated by using complex re-estimation formula. In order to evaluate and compare the performance of our system with other previous works, we use the TIMIT database. The duration test of our recognition system for each sentence is between 2 seconds (for short sentences) to 12 seconds (for long sentences). We get, by combining the 64 possible phones into 39 phonetic classes, a phone recognition correct rate of 71.06% and an accuracy rate of 65.25%. These results compare favorably with previously published works.
Type de document :
Communication dans un congrès
3rd International Conference on Multimedia Computing and Systems - ICMCS'12, May 2012, Tangier, Morocco. 2012
Liste complète des métadonnées

Littérature citée [13 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00761816
Contributeur : Joseph Di Martino <>
Soumis le : lundi 10 décembre 2012 - 09:38:53
Dernière modification le : jeudi 11 janvier 2018 - 06:19:56
Document(s) archivé(s) le : lundi 11 mars 2013 - 11:25:55

Fichier

ID_166_Othman_LACHHAB_ICMCS_20...
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00761816, version 1

Collections

Citation

Othman Lachhab, Joseph Di Martino, El Hassan Ibn Elhaj, Ahmed Hammouch. Real Time Context-Independent Phone Recognition Using a Simplified Statistical Training Algorithm. 3rd International Conference on Multimedia Computing and Systems - ICMCS'12, May 2012, Tangier, Morocco. 2012. 〈hal-00761816〉

Partager

Métriques

Consultations de la notice

304

Téléchargements de fichiers

245