Padé approximants to certain elliptic-type functions

Abstract : Given non-collinear points a_1, a_2, a_3, there is a unique compact, say \Delta, that has minimal logarithmic capacity among all continua joining a_1, a_2, and a_3. For h be a complex-valued non-vanishing Dini-continuous function on \Delta, we consider f_h(z) := (1/\pi i)\int_\Delta h(t)/(t-z) dt/w^+(t), where w(z) := \sqrt{\prod_{k=0}^3(z-a_k)} and w^+ the one-sided value according to some orientation of \Delta. In this work we present strong asymptotics of diagonal Padé approximants to f_h and describe the behavior of the spurious pole and the regions of locally uniform convergence from a generic perspective.
Type de document :
Article dans une revue
Journal d'analyse mathématique, Springer, 2013, 121 (1), pp.31-86. 〈10.1007/s11854-013-0027-9〉
Liste complète des métadonnées

https://hal.inria.fr/hal-00764314
Contributeur : Laurent Baratchart <>
Soumis le : mercredi 12 décembre 2012 - 16:57:42
Dernière modification le : jeudi 11 janvier 2018 - 16:57:52

Lien texte intégral

Identifiants

Collections

Citation

Laurent Baratchart, Maxim Yattselev. Padé approximants to certain elliptic-type functions. Journal d'analyse mathématique, Springer, 2013, 121 (1), pp.31-86. 〈10.1007/s11854-013-0027-9〉. 〈hal-00764314〉

Partager

Métriques

Consultations de la notice

299