Online Learning for Ground Trajectory Prediction

Areski Hadjaz 1 Gaétan Marceau 1, 2 Pierre Savéant 3 Marc Schoenauer 2, 4
2 TAO - Machine Learning and Optimisation
LRI - Laboratoire de Recherche en Informatique, UP11 - Université Paris-Sud - Paris 11, Inria Saclay - Ile de France, CNRS - Centre National de la Recherche Scientifique : UMR8623
Abstract : This paper presents a model based on an hybrid system to numerically simulate the climbing phase of an aircraft. This model is then used within a trajectory prediction tool. Finally, the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) optimization algorithm is used to tune five selected parameters, and thus improve the accuracy of the model. Incor- porated within a trajectory prediction tool, this model can be used to derive the order of magnitude of the prediction error over time, and thus the domain of validity of the trajectory prediction. A first validation experiment of the proposed model is based on the errors along time for a one-time trajectory prediction at the take off of the flight with respect to the default values of the theoretical BADA model. This experiment, assuming complete information, also shows the limit of the model. A second experiment part presents an on-line trajectory prediction, in which the prediction is continuously updated based on the current aircraft position. This approach raises several issues, for which improvements of the basic model are proposed, and the resulting trajectory prediction tool shows statistically significantly more accurate results than those of the default model.
Type de document :
Communication dans un congrès
Schaefer, Dirk. SESAR 2nd Innovation Days, Nov 2012, Braunschweig, Germany. 2012
Liste complète des métadonnées

Littérature citée [26 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00766049
Contributeur : Gaétan Marceau <>
Soumis le : lundi 17 décembre 2012 - 14:47:19
Dernière modification le : jeudi 11 janvier 2018 - 01:49:38
Document(s) archivé(s) le : dimanche 18 décembre 2016 - 03:25:53

Fichiers

opwpe.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00766049, version 1
  • ARXIV : 1212.3998

Collections

Citation

Areski Hadjaz, Gaétan Marceau, Pierre Savéant, Marc Schoenauer. Online Learning for Ground Trajectory Prediction. Schaefer, Dirk. SESAR 2nd Innovation Days, Nov 2012, Braunschweig, Germany. 2012. 〈hal-00766049〉

Partager

Métriques

Consultations de la notice

419

Téléchargements de fichiers

607