Broadening the Scope of Differential Privacy Using Metrics

Konstantinos Chatzikokolakis 1, 2 Miguel Andrés 1 Nicolás Bordenabe 1, 2 Catuscia Palamidessi 1
1 COMETE - Concurrency, Mobility and Transactions
LIX - Laboratoire d'informatique de l'École polytechnique [Palaiseau], Inria Saclay - Ile de France, Polytechnique - X, CNRS - Centre National de la Recherche Scientifique : UMR7161
Abstract : Differential Privacy is one of the most prominent frameworks used to deal with disclosure prevention in statistical databases. It provides a formal privacy guarantee, ensuring that sensitive information relative to individuals cannot be easily inferred by disclosing answers to aggregate queries. If two databases are adjacent, i.e. differ only for an individual, then the query should not allow to tell them apart by more than a certain factor. This induces a bound also on the distinguishability of two generic databases, which is determined by their distance on the Hamming graph of the adjacency relation. In this paper we explore the implications of differential privacy when the indistinguishability requirement depends on an arbitrary notion of distance. We show that we can naturally express, in this way, (protection against) privacy threats that cannot be represented with the standard notion, leading to new applications of the differential privacy framework. We give intuitive characterizations of these threats in terms of Bayesian adversaries, which generalize two interpretations of (standard) differential privacy from the literature. We revisit the well-known results stating that universally optimal mechanisms exist only for counting queries: We show that, in our extended setting, universally optimal mechanisms exist for other queries too, notably sum, average, and percentile queries. We explore various applications of the generalized definition, for statistical databases as well as for other areas, such that geolocation and smart metering.
Type de document :
Communication dans un congrès
De Cristofaro, Emiliano and Wright, Matthew. The 13th Privacy Enhancing Technologies Symposium, Jul 2013, Bloomington, Indiana, United States. Springer, 7981, pp.82-102, 2013, Lecture Notes in Computer Science. 〈10.1007/978-3-642-39077-7〉
Liste complète des métadonnées

Littérature citée [20 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00767210
Contributeur : Catuscia Palamidessi <>
Soumis le : vendredi 17 mai 2013 - 18:17:03
Dernière modification le : jeudi 9 février 2017 - 15:09:05
Document(s) archivé(s) le : vendredi 31 mars 2017 - 19:30:48

Fichier

dpmetrics.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Konstantinos Chatzikokolakis, Miguel Andrés, Nicolás Bordenabe, Catuscia Palamidessi. Broadening the Scope of Differential Privacy Using Metrics. De Cristofaro, Emiliano and Wright, Matthew. The 13th Privacy Enhancing Technologies Symposium, Jul 2013, Bloomington, Indiana, United States. Springer, 7981, pp.82-102, 2013, Lecture Notes in Computer Science. 〈10.1007/978-3-642-39077-7〉. 〈hal-00767210〉

Partager

Métriques

Consultations de
la notice

1151

Téléchargements du document

723