Delineating social network data anonymization via random edge perturbation

Abstract : Social network data analysis raises concerns about the privacy of related entities or individuals. To address this issue, organizations can publish data after simply replacing the identities of individuals with pseudonyms, leaving the overall structure of the social network unchanged. However, it has been shown that attacks based on structural identification (e.g., a walk-based attack) enable an adversary to re-identify selected individuals in an anonymized network. In this paper we explore the capacity of techniques based on random edge perturbation to thwart such attacks. We theoretically establish that any kind of structural identification attack can effectively be prevented using random edge perturbation and show that, surprisingly, important properties of the whole network, as well as of subgraphs thereof, can be accurately calculated and hence data analysis tasks performed on the perturbed data, given that the legitimate data recipient knows the perturbation probability as well. Yet we also examine ways to enhance the walk-based attack, proposing a variant we call probabilistic attack. Nevertheless, we demonstrate that such probabilistic attacks can also be prevented under sufficient perturbation. Eventually, we conduct a thorough theoretical study of the probability of success of any}structural attack as a function of the perturbation probability. Our analysis provides a powerful tool for delineating the identification risk of perturbed social network data; our extensive experiments with synthetic and real datasets confirm our expectations.
Type de document :
Communication dans un congrès
Xue-wen Chen and Guy Lebanon and Haixun Wang and Mohammed J. Zaki. CIKM - 21st ACM International Conference on Information and Knowledge Management - 2012, Oct 2012, Maui, United States. 2012
Liste complète des métadonnées

Littérature citée [13 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00768441
Contributeur : Chedy Raïssi <>
Soumis le : vendredi 21 décembre 2012 - 14:42:38
Dernière modification le : jeudi 11 janvier 2018 - 06:25:24
Document(s) archivé(s) le : dimanche 18 décembre 2016 - 08:36:34

Fichier

fp021-xue.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00768441, version 1

Collections

Citation

Mingqiang Xue, Panagiotis Karras, Chedy Raïssi, Panos Kalnis, Hung Keng Pung. Delineating social network data anonymization via random edge perturbation. Xue-wen Chen and Guy Lebanon and Haixun Wang and Mohammed J. Zaki. CIKM - 21st ACM International Conference on Information and Knowledge Management - 2012, Oct 2012, Maui, United States. 2012. 〈hal-00768441〉

Partager

Métriques

Consultations de la notice

389

Téléchargements de fichiers

265