The continuum limit of critical random graphs

Abstract : We consider the Erdos-Renyi random graph G(n,p) inside the critical window, that is when p=1/n+ lambda*n^{-4/3}, for some fixed lambda in R. Then, as a metric space with the graph distance rescaled by n^{-1/3}, the sequence of connected components G(n,p) converges towards a sequence of continuous compact metric spaces. The result relies on a bijection between graphs and certain marked random walks, and the theory of continuum random trees. Our result gives access to the answers to a great many questions about distances in critical random graphs. In particular, we deduce that the diameter of G(n,p) rescaled by n^{-1/3} converges in distribution to an absolutely continuous random variable with finite mean.
Type de document :
Article dans une revue
Probability Theory and Related Fields, Springer Verlag, 2012, 152, pp.367-406. 〈10.1007/s00440-010-0325-4〉
Liste complète des métadonnées

https://hal.inria.fr/hal-00773370
Contributeur : Nicolas Broutin <>
Soumis le : dimanche 13 janvier 2013 - 16:10:12
Dernière modification le : vendredi 25 mai 2018 - 12:02:03

Lien texte intégral

Identifiants

Collections

Citation

Louigi Addario-Berry, Nicolas Broutin, Christina Goldschmidt. The continuum limit of critical random graphs. Probability Theory and Related Fields, Springer Verlag, 2012, 152, pp.367-406. 〈10.1007/s00440-010-0325-4〉. 〈hal-00773370〉

Partager

Métriques

Consultations de la notice

225