Local Generic Position for Root Isolation of Zero-dimensional Triangular Polynomial Systems

Jia Li 1 Jinsan Cheng 2 Elias Tsigaridas 3
1 Beijing Electronic Science and Technology Institute
KLMM - Key Laboratory of Mathematics Mechanization
3 PolSys - Polynomial Systems
LIP6 - Laboratoire d'Informatique de Paris 6, Inria Paris-Rocquencourt
Abstract : We present an algorithm based on local generic position (LGP) to isolate the complex or real roots and their multiplicities of a zero-dimensional triangular polynomial system. The Boolean complexity of the algorithm for computing the real roots is single exponential: $\tilde{\mathcal {O}}_B(N^{n^2})$, where $N=\max\{d,\tau\}$, $d$ and $\tau$, is the degree and the maximum coefficient bitsize of the polynomials, respectively, and $n$ is the number of variables.
Type de document :
Communication dans un congrès
W. Koepf and E.Vorozhtsov. CASC 2012 - 14th International Workshop on Computer Algebra in Scientific Computing, Sep 2012, Maribor, Slovenia. Springer, 7442, pp.186-197, 2012, Lecture Notes in Computer Science. <10.1007/978-3-642-32973-9_16>
Liste complète des métadonnées


https://hal.inria.fr/hal-00776212
Contributeur : Elias Tsigaridas <>
Soumis le : mardi 15 janvier 2013 - 11:28:58
Dernière modification le : mardi 20 septembre 2016 - 01:04:09
Document(s) archivé(s) le : samedi 1 avril 2017 - 05:14:15

Fichier

lct-lgp.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Jia Li, Jinsan Cheng, Elias Tsigaridas. Local Generic Position for Root Isolation of Zero-dimensional Triangular Polynomial Systems. W. Koepf and E.Vorozhtsov. CASC 2012 - 14th International Workshop on Computer Algebra in Scientific Computing, Sep 2012, Maribor, Slovenia. Springer, 7442, pp.186-197, 2012, Lecture Notes in Computer Science. <10.1007/978-3-642-32973-9_16>. <hal-00776212>

Partager

Métriques

Consultations de
la notice

255

Téléchargements du document

85