Skip to Main content Skip to Navigation
Journal articles

Algebraic Analysis of Stability and Bifurcation of a Self-assembling Micelle System

Wei Niu 1 Dongming Wang 2, 3
3 PolSys - Polynomial Systems
LIP6 - Laboratoire d'Informatique de Paris 6, Inria Paris-Rocquencourt
Abstract : In this paper, we analyze stability, bifurcations, and limit cycles for the cubic self-assembling micelle system with chemical sinks using algebraic methods and provide a complete classification of the stability and types of steady states in the hyperbolic case. Hopf bifurcation, saddle-node bifurcation, and Bogdanov-Takens bifurcation are also analyzed. Exact algebraic conditions on the four parameters of the system are derived to describe the stability and types of steady states and the kinds of bifurcations. It is shown that three limit cycles can be constructed from a Hopf bifurcation point by small perturbation
Document type :
Journal articles
Complete list of metadata

https://hal.inria.fr/hal-00779245
Contributor : Dongming Wang <>
Submitted on : Monday, January 21, 2013 - 9:27:05 PM
Last modification on : Friday, January 8, 2021 - 5:42:02 PM

Identifiers

Citation

Wei Niu, Dongming Wang. Algebraic Analysis of Stability and Bifurcation of a Self-assembling Micelle System. Applied Mathematics and Computation, Elsevier, 2012, 219 (1), pp.108-121. ⟨10.1016/j.amc.2012.04.087⟩. ⟨hal-00779245⟩

Share

Metrics

Record views

356