Complexity of Creative Telescoping for Bivariate Rational Functions

Abstract : The long-term goal initiated in this work is to obtain fast algorithms and implementations for definite integration in Almkvist and Zeilberger's framework of (differential) creative telescoping. Our complexity-driven approach is to obtain tight degree bounds on the various expressions involved in the method. To make the problem more tractable, we restrict to bivariate rational functions. By considering this constrained class of inputs, we are able to blend the general method of creative telescoping with the well-known Hermite reduction. We then use our new method to compute diagonals of rational power series arising from combinatorics.
Type de document :
Communication dans un congrès
Stephen Watt. ISSAC'10 - International Symposium on Symbolic and Algebraic Computation, Jul 2010, Munich, Germany. ACM, pp.203-210, 2010
Liste complète des métadonnées

https://hal.inria.fr/hal-00780066
Contributeur : Alin Bostan <>
Soumis le : mercredi 23 janvier 2013 - 10:06:20
Dernière modification le : vendredi 25 mai 2018 - 12:02:05

Lien texte intégral

Identifiants

  • HAL Id : hal-00780066, version 1
  • ARXIV : 1301.5045

Collections

Citation

Alin Bostan, Shaoshi Chen, Frédéric Chyzak, Ziming Li. Complexity of Creative Telescoping for Bivariate Rational Functions. Stephen Watt. ISSAC'10 - International Symposium on Symbolic and Algebraic Computation, Jul 2010, Munich, Germany. ACM, pp.203-210, 2010. 〈hal-00780066〉

Partager

Métriques

Consultations de la notice

129