Wavelet-based clustering for mixed-effects functional models in high dimension

Madison Giacofci 1 Sophie Lambert-Lacroix 2 Guillemette Marot 3, 4 Franck Picard 4
TIMC-IMAG - Techniques de l'Ingénierie Médicale et de la Complexité - Informatique, Mathématiques et Applications [Grenoble]
3 MODAL - MOdel for Data Analysis and Learning
Inria Lille - Nord Europe, LPP - Laboratoire Paul Painlevé - UMR 8524, CERIM - Santé publique : épidémiologie et qualité des soins-EA 2694, Polytech Lille, Université de Lille 1, IUT’A
4 BAMBOO - An algorithmic view on genomes, cells, and environments
Inria Grenoble - Rhône-Alpes, LBBE - Laboratoire de Biométrie et Biologie Evolutive
Abstract : We propose a method for high-dimensional curve clustering in the presence of interindividual variability. Curve clustering has longly been studied especially using splines to account for functional random effects. However, splines are not appropriate when dealing with high-dimensional data and can not be used to model irregular curves such as peak-like data. Our method is based on a wavelet decomposition of the signal for both fixed and random effects. We propose an efficient dimension reduction step based on wavelet thresholding adapted to multiple curves and using an appropriate structure for the random effect variance, we ensure that both fixed and random effects lie in the same functional space even when dealing with irregular functions that belong to Besov spaces. In the wavelet domain our model resumes to a linear mixed-effects model that can be used for a model-based clustering algorithm and for which we develop an EM-algorithm for maximum likelihood estimation. The properties of the overall procedure are validated by an extensive simulation study. Then, we illustrate our method on mass spectrometry data and we propose an original application of functional data analysis on microarray comparative genomic hybridization (CGH) data. Our procedure is available through the R package curvclust which is the first publicly available package that performs curve clustering with random effects in the high dimensional framework (available on the CRAN).
Type de document :
Article dans une revue
Biometrics, Wiley, 2013, 69 (1), pp.31-40. 〈10.1111/j.1541-0420.2012.01828.x〉
Liste complète des métadonnées

Contributeur : Guillemette Marot <>
Soumis le : mardi 29 janvier 2013 - 17:26:31
Dernière modification le : vendredi 19 janvier 2018 - 09:07:12



Madison Giacofci, Sophie Lambert-Lacroix, Guillemette Marot, Franck Picard. Wavelet-based clustering for mixed-effects functional models in high dimension. Biometrics, Wiley, 2013, 69 (1), pp.31-40. 〈10.1111/j.1541-0420.2012.01828.x〉. 〈hal-00782458〉



Consultations de la notice