Evaluating CPU and Memory Affinity for Numerical Scientific Multithreaded Benchmarks on Multi-cores

Abstract : Modern multi-core platforms feature complex topologies with different cache levels and hierarchical memory subsystems. Consequently, thread and data placement become crucial to achieve good performance. In this context, CPU and memory affinity appear as a promising approach to match the application characteristics to the underlying architecture. In this paper, we evaluate CPU and memory affinity strategies for numerical scientific multithreaded benchmarks on multi-core platforms. We use and analyze hardware performance event counters in order to have a better understanding of such impact. Indeed, the results obtained on different multi-core platforms and Linux kernels show that important performance improvements (up to 70%) can be obtained when applying affinity strategies that fit both the application and the platform characteristics.
Type de document :
Article dans une revue
IADIS International Journal on Computer Science and Information Systems (IJCSIS), IADIS Press, 2012
Liste complète des métadonnées

https://hal.inria.fr/hal-00788000
Contributeur : Arnaud Legrand <>
Soumis le : mercredi 13 février 2013 - 14:57:23
Dernière modification le : mercredi 29 novembre 2017 - 15:24:44

Identifiants

  • HAL Id : hal-00788000, version 1

Collections

Citation

Christiane Pousa Ribeiro, Márcio Castro, Vania Marangonzova-Martin, Jean-François Mehaut, Henrique Freitas, et al.. Evaluating CPU and Memory Affinity for Numerical Scientific Multithreaded Benchmarks on Multi-cores. IADIS International Journal on Computer Science and Information Systems (IJCSIS), IADIS Press, 2012. 〈hal-00788000〉

Partager

Métriques

Consultations de la notice

301