Optimized Cascade of Classifiers for People Detection Using Covariance Features

Abstract : People detection on static images and video sequences is a critical task in many computer vision applications, like image retrieval and video surveillance. It is also one of most challenging task due to the large number of possible situations, including variations in people appearance and poses. The proposed approach optimizes an existing approach based on classification on Riemannian manifolds using covariance matrices in a boosting scheme, making training and detection faster while maintaining equivalent performances. This optimisation is achieved by clustering negative samples before training, providing a smaller number of cascade levels and less weak classifiers in most levels in comparison with the original approach. Our work was evaluated and validated on INRIA Person dataset.
Type de document :
Communication dans un congrès
International Conference on Computer Vision Theory and Applications (VISAPP), Feb 2013, Barcelona, Spain. 2013
Liste complète des métadonnées

Littérature citée [14 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00794369
Contributeur : Malik Souded <>
Soumis le : lundi 25 février 2013 - 16:38:03
Dernière modification le : jeudi 11 janvier 2018 - 16:22:42
Document(s) archivé(s) le : dimanche 26 mai 2013 - 08:35:06

Fichier

VISAPP_2013_279_CR.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00794369, version 1

Collections

Citation

Malik Souded, François Bremond. Optimized Cascade of Classifiers for People Detection Using Covariance Features. International Conference on Computer Vision Theory and Applications (VISAPP), Feb 2013, Barcelona, Spain. 2013. 〈hal-00794369〉

Partager

Métriques

Consultations de la notice

282

Téléchargements de fichiers

228