Rounding Voronoi Diagram

Olivier Devillers 1 Pierre-Marie Gandoin 1
1 GEOMETRICA - Geometric computing
CRISAM - Inria Sophia Antipolis - Méditerranée
Abstract : Computational geometry classically assumes real-number arithmetic which does not exist in actual computers. A solution consists in using integer coordinates for data and exact arithmetic for computations. This approach implies that if the results of an algorithm are the input of another, these results must be rounded to match this hypothesis of integer coordinates. In this paper, we treat the case of two-dimensional Voronoi diagrams and are interested in rounding the Voronoi vertices at grid points while interesting properties of the Voronoi diagram are preserved. These properties are the planarity of the embedding and the convexity of the cells, we give a condition on the grid size to ensure that rounding to the nearest grid point preserve the properties. We also present heuristics to round vertices (not to the nearest) and preserve these properties.
Type de document :
Article dans une revue
Theoretical Computer Science, Elsevier, 2002, 283 (1), pp.203--221. 〈10.1016/S0304-3975(01)00076-7〉
Liste complète des métadonnées
Contributeur : Olivier Devillers <>
Soumis le : mercredi 27 février 2013 - 10:46:22
Dernière modification le : mardi 26 février 2019 - 11:19:49

Lien texte intégral




Olivier Devillers, Pierre-Marie Gandoin. Rounding Voronoi Diagram. Theoretical Computer Science, Elsevier, 2002, 283 (1), pp.203--221. 〈10.1016/S0304-3975(01)00076-7〉. 〈hal-00795053〉



Consultations de la notice