Bristle Maps: A Multivariate Abstraction Technique for Geovisualization

Abstract : We present Bristle Map, a novel method for the aggregation, abstraction, and stylization of spatiotemporal data that enables multi-attribute visualization, exploration, and analysis. This visualization technique supports the display of multi-dimensional data by providing users with a multi-parameter encoding scheme within a single visual encoding paradigm. Given a set of geographically located spatiotemporal events, we approximate the data as a continuous function using kernel density estimation. The density estimation encodes the probability that an event will occur within the space over a given temporal aggregation. These probability values, for one or more set of events, are then encoded into a bristle map. A bristle map consists of a series of straight lines that extend from, and are connected to, linear map elements such as roads, train, subway lines, etc. These lines vary in length, density, color, orientation, and transparency--creating the multivariate attribute encoding scheme where event magnitude, change, and uncertainty can be mapped as various bristle parameters. This approach increases the amount of information displayed in a single plot and allows for unique designs for various information schemes. We show the application of our bristle map encoding scheme using categorical spatiotemporal police reports. Our examples demonstrate the use of our technique for visualizing data magnitude, variable comparisons, and a variety of multivariate attribute combinations. To evaluate the effectiveness of our bristle map, we have conducted quantitative and qualitative evaluations where we compare our bristle map to conventional geovisualization techniques. Our results show that bristle maps are competitive in completion time and accuracy of tasks with various levels of complexity.
Type de document :
Article dans une revue
IEEE Transactions on Visualization and Computer Graphics, Institute of Electrical and Electronics Engineers, 2013, 19 (9), pp.1438-1454. 〈10.1109/TVCG.2013.66〉
Liste complète des métadonnées

Littérature citée [38 références]  Voir  Masquer  Télécharger


https://hal.inria.fr/hal-00796336
Contributeur : <>
Soumis le : jeudi 29 août 2013 - 16:46:29
Dernière modification le : jeudi 9 février 2017 - 15:47:23
Document(s) archivé(s) le : lundi 2 décembre 2013 - 08:52:53

Fichiers

Kim_2013_BMM.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Sungye Kim, Ross Maciejewski, Abish Malik, Yun Jang, David S. Ebert, et al.. Bristle Maps: A Multivariate Abstraction Technique for Geovisualization. IEEE Transactions on Visualization and Computer Graphics, Institute of Electrical and Electronics Engineers, 2013, 19 (9), pp.1438-1454. 〈10.1109/TVCG.2013.66〉. 〈hal-00796336〉

Partager

Métriques

Consultations de la notice

213

Téléchargements de fichiers

389