Solving microscopic flow problems using Stokes equations in SPH

Abstract : Starting from the Smoothed Particle Hydrodynamics method (SPH), we propose an alternative way to solve flow problems at a very low Reynolds number. The method is based on an explicit drop out of the inertial terms in the normal SPH equations, and solves the coupled system to find the velocities of the particles using the conjugate gradient method. The method will be called NSPH which refers to the noninertial character of the equations. Whereas the time-step in standard SPH formulations for low Reynolds numbers is linearly restricted by the inverse of the viscosity and quadratically by the particle resolution, the stability of the NSPH solution benefits from a higher viscosity and is independent of the particle resolution. Since this method allows for a much higher time-step, it solves creeping flow problems with a high resolution and a long timescale up to three orders of magnitude faster than SPH. In this paper, we compare the accuracy and capabilities of the new NSPH method to canonical SPH solutions considering a number of standard problems in fluid dynamics. In addition, we show that NSPH is capable of modeling more complex physical phenomena such as the motion of a red blood cell in plasma
Type de document :
Article dans une revue
Liste complète des métadonnées

Littérature citée [30 références]  Voir  Masquer  Télécharger
Contributeur : Paul Van Liedekerke <>
Soumis le : mardi 19 mars 2013 - 17:33:56
Dernière modification le : vendredi 25 mai 2018 - 12:02:02
Document(s) archivé(s) le : jeudi 20 juin 2013 - 16:30:37


Fichiers produits par l'(les) auteur(s)




Paul Van Liedekerke, Bart Smeets, Tim Odenthal, Engelbert Tijskens, Herman Ramon. Solving microscopic flow problems using Stokes equations in SPH. Computer Physics Communications, Elsevier, 2013, 〈〉. 〈10.1016/j.cpc.2013.02.013〉. 〈hal-00802400〉



Consultations de la notice


Téléchargements de fichiers