Learning from M/EEG data with variable brain activation delays

Abstract : Magneto- and electroencephalography (M/EEG) measure the electromagnetic signals produced by brain activity. In order to address the issue of limited signal-to-noise ratio (SNR) with raw data, acquisitions consist of multiple repetitions of the same experiment. An important challenge arising from such data is the variability of brain activations over the repetitions. It hinders statistical analysis such as prediction performance in a supervised learning setup. One such confounding variability is the time offset of the peak of the activation, which varies across repetitions. We propose to address this misalignment issue by explicitly modeling time shifts of different brain responses in a classification setup. To this end, we use the latent support vector machine (LSVM) formulation, where the latent shifts are inferred while learning the classifier parameters. The inferred shifts are further used to improve the SNR of the M/EEG data, and to infer the chronometry and the sequence of activations across the brain regions that are involved in the experimental task. Results are validated on a long term memory retrieval task, showing significant improvement using the proposed latent discriminative method.
Type de document :
Communication dans un congrès
International Conference on Information Processing in Medical Imaging, Jun 2013, Asilomar, United States. 2013
Liste complète des métadonnées

https://hal.inria.fr/hal-00803981
Contributeur : Wojciech Zaremba <>
Soumis le : lundi 25 mars 2013 - 14:13:02
Dernière modification le : jeudi 9 février 2017 - 15:18:42

Fichier

ipmi2013.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00803981, version 2

Citation

Wojciech Zaremba, M. Pawan Kumar, Alexandre Gramfort, Matthew Blaschko. Learning from M/EEG data with variable brain activation delays. International Conference on Information Processing in Medical Imaging, Jun 2013, Asilomar, United States. 2013. <hal-00803981v2>

Partager

Métriques

Consultations de
la notice

1927

Téléchargements du document

265