Families of fast elliptic curves from Q-curves

Abstract : We construct new families of elliptic curves over \(\FF_{p^2}\) with efficiently computable endomorphisms, which can be used to accelerate elliptic curve-based cryptosystems in the same way as Gallant--Lambert--Vanstone (GLV) and Galbraith--Lin--Scott (GLS) endomorphisms. Our construction is based on reducing \(\QQ\)-curves---curves over quadratic number fields without complex multiplication, but with isogenies to their Galois conjugates---modulo inert primes. As a first application of the general theory we construct, for every \(p > 3\), two one-parameter families of elliptic curves over \(\FF_{p^2}\) equipped with endomorphisms that are faster than doubling. Like GLS (which appears as a degenerate case of our construction), we offer the advantage over GLV of selecting from a much wider range of curves, and thus finding secure group orders when \(p\) is fixed. Unlike GLS, we also offer the possibility of constructing twist-secure curves. Among our examples are prime-order curves equipped with fast endomorphisms, with almost-prime-order twists, over \(\FF_{p^2}\) for \(p = 2^{127}-1\) and \(p = 2^{255}-19\).
Type de document :
Communication dans un congrès
Kazue Sako; Palash Sarkar. Advances in Cryptology - ASIACRYPT 2013, Dec 2013, Bangalore, India. Springer, 8269, pp.61-78, 2013, Lecture Notes in Computer Science. 〈10.1007/978-3-642-42033-7_4〉
Liste complète des métadonnées

Littérature citée [26 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00825287
Contributeur : Benjamin Smith <>
Soumis le : jeudi 23 mai 2013 - 13:13:59
Dernière modification le : jeudi 11 janvier 2018 - 06:19:44
Document(s) archivé(s) le : samedi 24 août 2013 - 05:40:09

Fichiers

qc-hal.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Benjamin Smith. Families of fast elliptic curves from Q-curves. Kazue Sako; Palash Sarkar. Advances in Cryptology - ASIACRYPT 2013, Dec 2013, Bangalore, India. Springer, 8269, pp.61-78, 2013, Lecture Notes in Computer Science. 〈10.1007/978-3-642-42033-7_4〉. 〈hal-00825287〉

Partager

Métriques

Consultations de la notice

522

Téléchargements de fichiers

281