A Markovian event-based framework for stochastic spiking neural networks

Jonathan Touboul 1 Olivier Faugeras 1
1 NEUROMATHCOMP
CRISAM - Inria Sophia Antipolis - Méditerranée , INRIA Rocquencourt, ENS Paris - École normale supérieure - Paris, UNS - Université Nice Sophia Antipolis, CNRS - Centre National de la Recherche Scientifique : UMR8548
Abstract : In spiking neural networks, the information is conveyed by the spike times, that depend on the intrinsic dynamics of each neuron, the input they receive and on the connections between neurons. In this article we study the Markovian nature of the sequence of spike times in stochastic neural networks, and in particular the ability to deduce from a spike train the next spike time, and therefore produce a description of the network activity only based on the spike times regardless of the membrane potential process. To study this question in a rigorous manner, we introduce and study an event-based description of networks of noisy integrate-and-fire neurons, i.e. that is based on the computation of the spike times. We show that the firing times of the neurons in the networks constitute a Markov chain, whose transition probability is related to the probability distribution of the interspike interval of the neurons in the network. In the cases where the Markovian model can be developed, the transition probability is explicitly derived in such classical cases of neural networks as the linear integrate-and-fire neuron models with excitatory and inhibitory interactions, for different types of synapses, possibly featuring noisy synaptic integration, transmission delays and absolute and relative refractory period. This covers most of the cases that have been investigated in the event-based description of spiking deterministic neural networks.
Type de document :
Article dans une revue
Journal of Computational Neuroscience, Springer Verlag, 2011, 31 (3), pp.485-507. 〈10.1007/s10827-011-0327-y〉
Liste complète des métadonnées

https://hal.inria.fr/hal-00845725
Contributeur : Pierre Kornprobst <>
Soumis le : mercredi 17 juillet 2013 - 16:12:23
Dernière modification le : vendredi 12 janvier 2018 - 01:50:27

Identifiants

Collections

Citation

Jonathan Touboul, Olivier Faugeras. A Markovian event-based framework for stochastic spiking neural networks. Journal of Computational Neuroscience, Springer Verlag, 2011, 31 (3), pp.485-507. 〈10.1007/s10827-011-0327-y〉. 〈hal-00845725〉

Partager

Métriques

Consultations de la notice

246