Propagation to chaos and information processing in large assemblies of neurons

Olivier Faugeras 1
1 NEUROMATHCOMP
CRISAM - Inria Sophia Antipolis - Méditerranée , INRIA Rocquencourt, ENS Paris - École normale supérieure - Paris, UNS - Université Nice Sophia Antipolis, CNRS - Centre National de la Recherche Scientifique : UMR8548
Abstract : We derive the mean-field equations of completely connected networks of excitatory/inhibitory Hodgkin-Huxley and Fitzhugh-Nagumo neurons and prove that there is propagation to chaos, i.e. that in the limit the neurons become a) independent (this is the propagation to chaos) and b) a copy (with the same law) of a new individual, the mean field limit. This is related to some recently published experimental work by Eker et al., Science 2010. We show the results of numerical experiments that confirm the propagation to chaos and indicate, through the notion of Fischer information, that this is optimal in terms of information processing. We also consider finite size effects, i.e. the difference between the mean field situation when neuronal populations are of infinite size and the real situation, when the size is finite and show that the mean field approximation is very good for populations of reasonable size.
Type de document :
Communication dans un congrès
CNS workshop on Methods of Information Theory in Computational Neuroscience, 2011, Stockholm, Sweden. 2011
Liste complète des métadonnées

https://hal.inria.fr/hal-00845737
Contributeur : Pierre Kornprobst <>
Soumis le : mercredi 17 juillet 2013 - 16:12:56
Dernière modification le : jeudi 26 avril 2018 - 10:28:51

Identifiants

  • HAL Id : hal-00845737, version 1

Collections

Citation

Olivier Faugeras. Propagation to chaos and information processing in large assemblies of neurons. CNS workshop on Methods of Information Theory in Computational Neuroscience, 2011, Stockholm, Sweden. 2011. 〈hal-00845737〉

Partager

Métriques

Consultations de la notice

146