From variable density sampling to continuous sampling using Markov chains

Abstract : Since its discovery over the last decade, Compressed Sensing (CS) has been successfully applied to Magnetic Resonance Imaging (MRI). It has been shown to be a powerful way to reduce scanning time without sacrificing image quality. MR images are actually strongly compressible in a wavelet basis, the latter being largely incoherent with the k-space or spatial Fourier domain where acquisition is performed. Nevertheless, since its first application to MRI [1], the theoretical justification of actual k-space sampling strategies is questionable. Indeed, the vast majority of k-space sampling distributions have been heuris- tically designed (e.g., variable density) or driven by experimental feasibility considerations (e.g., random radial or spiral sampling to achieve smoothness k-space trajectory). In this paper, we try to reconcile very recent CS results with the MRI specificities (magnetic field gradients) by enforcing the measurements, i.e. samples of k-space, to fit continuous trajectories. To this end, we propose random walk continuous sampling based on Markov chains and we compare the reconstruction quality of this scheme to the state-of-the art.
Type de document :
Communication dans un congrès
SampTA - 10th Conference International Conference on Sampling Theory and Applications, Jul 2013, Bremen, Germany. pp.200-203, 2013
Liste complète des métadonnées

Littérature citée [13 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00848286
Contributeur : Nicolas Chauffert <>
Soumis le : vendredi 26 juillet 2013 - 10:11:27
Dernière modification le : jeudi 18 janvier 2018 - 10:39:11
Document(s) archivé(s) le : mercredi 5 avril 2017 - 16:52:57

Fichiers

markov_sampling_Sampta.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00848286, version 1
  • ARXIV : 1307.6960

Citation

Nicolas Chauffert, Philippe Ciuciu, Pierre Weiss, Fabrice Gamboa. From variable density sampling to continuous sampling using Markov chains. SampTA - 10th Conference International Conference on Sampling Theory and Applications, Jul 2013, Bremen, Germany. pp.200-203, 2013. 〈hal-00848286〉

Partager

Métriques

Consultations de la notice

282

Téléchargements de fichiers

121