A simple model to control growth rate of synthetic E. coli during the exponential phase: model analysis and parameter estimation

Alfonso Carta 1, * Madalena Chaves 1 Jean-Luc Gouzé 1
* Auteur correspondant
1 BIOCORE - Biological control of artificial ecosystems
LOV - Laboratoire d'océanographie de Villefranche, CRISAM - Inria Sophia Antipolis - Méditerranée , INRA - Institut National de la Recherche Agronomique
Abstract : We develop and analyze a model of a minimal synthetic gene circuit, that describes part of the gene expression machinery in Escherichia coli, and enables the control of the growth rate of the cells during the exponential phase. This model is a piecewise non-linear system with two variables (the concentrations of two gene products) and an input (an inducer). We study the qualitative dynamics of the model and the bifurcation diagram with respect to the input. Moreover, an analytic expression of the growth rate during the exponential phase as function of the input is derived. A relevant problem is that of identi ability of the parameters of this expression supposing noisy measurements of exponential growth rate. We present such an identi ability study that we validate in silico with synthetic measurements.
Type de document :
Chapitre d'ouvrage
David Gilbert and Monika Heiner. Computational Methods in Systems Biology, 7605, Springer, pp.107-126, 2012, Lecture Notes in Computer Science, 〈10.1007/978-3-642-33636-2_8〉
Liste complète des métadonnées

Littérature citée [34 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00848400
Contributeur : Jean-Luc Gouzé <>
Soumis le : lundi 26 août 2013 - 15:32:38
Dernière modification le : jeudi 11 janvier 2018 - 16:30:41
Document(s) archivé(s) le : mercredi 27 novembre 2013 - 04:20:44

Fichier

CartaChavesGouze-CMSB2012.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Alfonso Carta, Madalena Chaves, Jean-Luc Gouzé. A simple model to control growth rate of synthetic E. coli during the exponential phase: model analysis and parameter estimation. David Gilbert and Monika Heiner. Computational Methods in Systems Biology, 7605, Springer, pp.107-126, 2012, Lecture Notes in Computer Science, 〈10.1007/978-3-642-33636-2_8〉. 〈hal-00848400〉

Partager

Métriques

Consultations de la notice

453

Téléchargements de fichiers

165