Hyperbolic Delaunay triangulations and Voronoi diagrams made practical

Mikhail Bogdanov 1 Olivier Devillers 1 Monique Teillaud 1
1 GEOMETRICA - Geometric computing
CRISAM - Inria Sophia Antipolis - Méditerranée , Inria Saclay - Ile de France
Abstract : We show how to compute Delaunay triangulations and Voronoi diagrams of a set of points in hyperbolic space in a very simple way. While the algorithm follows from [CCCG92], we elaborate on arithmetic issues, observing that only rational computations are needed. This allows an exact and efficient implementation.
Document type :
Conference papers
Liste complète des métadonnées

Cited literature [18 references]  Display  Hide  Download


https://hal.inria.fr/hal-00850586
Contributor : Olivier Devillers <>
Submitted on : Wednesday, August 7, 2013 - 1:31:14 PM
Last modification on : Saturday, January 27, 2018 - 1:31:00 AM
Document(s) archivé(s) le : Wednesday, April 5, 2017 - 7:43:11 PM

Files

hal.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : hal-00850586, version 1

Collections

Citation

Mikhail Bogdanov, Olivier Devillers, Monique Teillaud. Hyperbolic Delaunay triangulations and Voronoi diagrams made practical. XIV Spanish Meeting on Computational Geometry,, 2011, Alcala de Henares, Spain. 2011. 〈hal-00850586〉

Share

Metrics

Record views

286

Files downloads

334