Hemodynamic estimation based on Consensus Clustering

Abstract : Modern cognitive experiments in functional Mag- netic Resonance Imaging (fMRI) often aim at understanding the temporal dynamics of the brain response in regions acti- vated by a given stimulus. The study of the variability of the hemodynamic response function (HRF) and its characteristics can provide some answers. In this context, we aim at improving the accuracy of the HRF estimation. To do so, we relied on a Joint-Detection-Estimation (JDE) framework that enables robust detection of brain activity as well as HRF estimation, in a Bayesian setting [2]. So far, the hemodynamic results provided by the JDE formalism have depended on a prior parcellation of the data performed before JDE inference. In this study, we propose a new approach to relax this prior knowledge: using consensus clustering techniques based on random parcellations of the data, we combine hemodynamics results provided by different parcellations, so as to robustify the HRF estimation.
Type de document :
Communication dans un congrès
PRNI 2013 -- 3rd International Workshop on Pattern Recognition in NeuroImaging, Jun 2013, Philadelphia, United States. 2013
Liste complète des métadonnées

Littérature citée [9 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00854621
Contributeur : Solveig Badillo <>
Soumis le : mardi 3 septembre 2013 - 16:42:35
Dernière modification le : vendredi 22 juin 2018 - 01:20:20
Document(s) archivé(s) le : jeudi 6 avril 2017 - 09:32:17

Fichier

PRNI_badillo_varoquaux_ciuciu2...
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00854621, version 1

Collections

Citation

Solveig Badillo, Gaël Varoquaux, Philippe Ciuciu. Hemodynamic estimation based on Consensus Clustering. PRNI 2013 -- 3rd International Workshop on Pattern Recognition in NeuroImaging, Jun 2013, Philadelphia, United States. 2013. 〈hal-00854621〉

Partager

Métriques

Consultations de la notice

301

Téléchargements de fichiers

164