Learning-Based Symmetry Detection in Natural Images

Abstract : In this work we propose a learning-based approach to sym- metry detection in natural images. We focus on ribbon-like structures, i.e. contours marking local and approximate reflection symmetry and make three contributions to improve their detection. First, we create and make publicly available a ground-truth dataset for this task by build- ing on the Berkeley Segmentation Dataset. Second, we extract features representing multiple complementary cues, such as grayscale structure, color, texture, and spectral clustering information. Third, we use super- vised learning to learn how to combine these cues, and employ MIL to accommodate the unknown scale and orientation of the symmetric struc- tures. We systematically evaluate the performance contribution of each individual component in our pipeline, and demonstrate that overall we consistently improve upon results obtained using existing alternatives.
Type de document :
Communication dans un congrès
ECCV - 12th European Conference on Computer Vision, Oct 2012, Florence, Italy. pp.41-54, 2012
Liste complète des métadonnées

Littérature citée [35 références]  Voir  Masquer  Télécharger

Contributeur : Stavros Tsogkas <>
Soumis le : dimanche 1 septembre 2013 - 21:52:05
Dernière modification le : lundi 1 octobre 2018 - 17:00:03
Document(s) archivé(s) le : lundi 2 décembre 2013 - 08:55:31


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-00856535, version 1



Stavros Tsogkas, Iasonas Kokkinos. Learning-Based Symmetry Detection in Natural Images. ECCV - 12th European Conference on Computer Vision, Oct 2012, Florence, Italy. pp.41-54, 2012. 〈hal-00856535〉



Consultations de la notice


Téléchargements de fichiers