Benchmarking Methods for Audio-Visual Recognition Using Tiny Training Sets

Xavier Alameda-Pineda 1 Jordi Sanchez-Riera 1 Radu Horaud 1, *
* Auteur correspondant
1 PERCEPTION - Interpretation and Modelling of Images and Videos
Inria Grenoble - Rhône-Alpes, LJK - Laboratoire Jean Kuntzmann, INPG - Institut National Polytechnique de Grenoble
Abstract : The problem of choosing a classifier for audio-visual command recognition is addressed. Because such commands are culture- and user-dependant, methods need to learn new commands from a few examples. We benchmark three state-of-the-art discriminative classifiers based on bag of words and SVM. The comparison is made on monocular and monaural recordings of a publicly available dataset. We seek for the best trade off between speed, robustness and size of the training set. In the light of over 150,000 experiments, we conclude that this is a promising direction of work towards a flexible methodology that must be easily adaptable to a large variety of users.
Type de document :
Communication dans un congrès
ICASSP 2013 - IEEE International Conference on Acoustics, Speech, and Signal Processing, May 2013, Vancouver, Canada. IEEE, pp.3662-3666, 2013, 〈10.1109/ICASSP.2013.6638341〉
Liste complète des métadonnées

Littérature citée [10 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00861645
Contributeur : Team Perception <>
Soumis le : vendredi 13 septembre 2013 - 11:27:03
Dernière modification le : jeudi 11 janvier 2018 - 01:48:44
Document(s) archivé(s) le : jeudi 6 avril 2017 - 19:24:19

Fichier

main.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Xavier Alameda-Pineda, Jordi Sanchez-Riera, Radu Horaud. Benchmarking Methods for Audio-Visual Recognition Using Tiny Training Sets. ICASSP 2013 - IEEE International Conference on Acoustics, Speech, and Signal Processing, May 2013, Vancouver, Canada. IEEE, pp.3662-3666, 2013, 〈10.1109/ICASSP.2013.6638341〉. 〈hal-00861645〉

Partager

Métriques

Consultations de la notice

696

Téléchargements de fichiers

236