Discovering the Structure of a Planar Mirror System from Multiple Observations of a Single Point

Abstract : We investigate the problem of identifying the position of a viewer inside a room of planar mirrors with unknown geometry in conjunction with the room's shape parameters. We consider the observations to consist of angularly resolved depth measurements of a single scene point that is being observed via many multi-bounce interactions with the specular room geometry. Applications of this problem statement include areas such as calibration, acoustic echo cancelation and time-of-flight imaging. We theoretically analyze the problem and derive sufficient conditions for a combination of convex room geometry, observer, and scene point to be reconstructable. The resulting constructive algorithm is exponential in nature and, therefore, not directly applicable to practical scenarios. To counter the situation, we propose theoretically devised geometric constraints that enable an efficient pruning of the solution space and develop a heuristic randomized search algorithm that uses these constraints to obtain an effective solution. We demonstrate the effectiveness of our algorithm on extensive simulationsas well as in a challenging real-world calibration scenario.
Type de document :
Communication dans un congrès
CVPR - Conference on Computer Vision and Pattern Recognition, Jun 2013, Portland, Oregon, United States. 2013
Liste complète des métadonnées


https://hal.inria.fr/hal-00863919
Contributeur : Xavier Granier <>
Soumis le : jeudi 19 septembre 2013 - 21:01:49
Dernière modification le : jeudi 9 février 2017 - 15:24:13
Document(s) archivé(s) le : vendredi 7 avril 2017 - 00:20:33

Fichier

cvpr13.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00863919, version 1

Collections

Citation

Ilya Reshtouski, Alkhazur Manakov, Ayush Bhandari, Ramesh Raskar, Hans-Peter Seidel, et al.. Discovering the Structure of a Planar Mirror System from Multiple Observations of a Single Point. CVPR - Conference on Computer Vision and Pattern Recognition, Jun 2013, Portland, Oregon, United States. 2013. <hal-00863919>

Partager

Métriques

Consultations de
la notice

352

Téléchargements du document

112