Denoising and fast diffusion imaging with physically constrained sparse dictionary learning

Abstract : Diffusion-weighted imaging (DWI) allows imaging the geometry of water diffusion in biological tissues. However, DW images are noisy at high b-values and acquisitions are slow when using a large number of measurements, such as in Diffusion Spectrum Imaging (DSI). This work aims to denoise DWI and reduce the number of required measurements, while maintaining data quality. To capture the structure of DWI data, we use sparse dictionary learning constrained by the physical properties of the signal: symmetry and positivity. The method learns a dictionary of diffusion profiles on all the DW images at the same time and then scales to full brain data. Its performance is investigated with simulations and two real DSI datasets. We obtain better signal estimates from noisy measurements than by applying mirror symmetry through the q-space origin, Gaussian denoising or state-of- the-art non-local means denoising. Using a high-resolution dictionary learnt on another subject, we show that we can reduce the number of images acquired while still generating high resolution DSI data. Using dictionary learning, one can denoise DW images effectively and perform faster acquisitions. Higher b-value acquisitions and DSI techniques are possible with approximately 40 measurements. This opens important perspectives for the connectomics community using DSI.
Type de document :
Article dans une revue
Liste complète des métadonnées

Littérature citée [47 références]  Voir  Masquer  Télécharger
Contributeur : Alexandre Gramfort <>
Soumis le : dimanche 29 septembre 2013 - 15:13:56
Dernière modification le : jeudi 7 mars 2019 - 15:34:14
Document(s) archivé(s) le : vendredi 7 avril 2017 - 04:17:03


Fichiers produits par l'(les) auteur(s)



Alexandre Gramfort, Cyril Poupon, Maxime Descoteaux. Denoising and fast diffusion imaging with physically constrained sparse dictionary learning. Medical Image Analysis, Elsevier, 2013, 18 (1), pp.36-49. 〈〉. 〈10.1016/〉. 〈hal-00867372〉



Consultations de la notice


Téléchargements de fichiers