Skip to Main content Skip to Navigation
Journal articles

Coding-based informed source separation: Nonnegative tensor factorization approach

Abstract : Informed source separation (ISS) aims at reliably recovering sources from a mixture. To this purpose, it relies on the assumption that the original sources are available during an encoding stage. Given both sources and mixture, a sideinformation may be computed and transmitted along with the mixture, whereas the original sources are not available any longer. During a decoding stage, both mixture and side-information are processed to recover the sources. ISS is motivated by a number of specific applications including active listening and remixing of music, karaoke, audio gaming, etc. Most ISS techniques proposed so far rely on a source separation strategy and cannot achieve better results than oracle estimators. In this study, we introduce Coding-based ISS (CISS) and draw the connection between ISS and source coding. CISS amounts to encode the sources using not only a model as in source coding but also the observation of the mixture. This strategy has several advantages over conventional ISS methods. First, it can reach any quality, provided sufficient bandwidth is available as in source coding. Second, it makes use of the mixture in order to reduce the bitrate required to transmit the sources, as in classical ISS. Furthermore, we introduce Nonnegative Tensor Factorization as a very efficient model for CISS and report rate-distortion results that strongly outperform the state of the art.
Complete list of metadata

Cited literature [49 references]  Display  Hide  Download
Contributor : Alexey Ozerov Connect in order to contact the contributor
Submitted on : Thursday, October 3, 2013 - 4:58:50 PM
Last modification on : Tuesday, March 8, 2022 - 5:46:04 PM
Long-term archiving on: : Saturday, January 4, 2014 - 7:45:21 AM


Files produced by the author(s)




Alexey Ozerov, Antoine Liutkus, Roland Badeau, Gael Richard. Coding-based informed source separation: Nonnegative tensor factorization approach. IEEE Transactions on Audio, Speech and Language Processing, Institute of Electrical and Electronics Engineers, 2013, 21 (8), pp.1699-1712. ⟨10.1109/TASL.2013.2260153⟩. ⟨hal-00869603⟩



Record views


Files downloads