Object removal and loss concealment using neighbor embedding

Christine Guillemot 1 Mehmet Turkan 2 Olivier Le Meur 2 Mounira Ebdelli 1
1 Sirocco - Analysis representation, compression and communication of visual data
IRISA-D5 - SIGNAUX ET IMAGES NUMÉRIQUES, ROBOTIQUE, Inria Rennes – Bretagne Atlantique
2 TEMICS - Digital image processing, modeling and communication
IRISA - Institut de Recherche en Informatique et Systèmes Aléatoires, Inria Rennes – Bretagne Atlantique
Abstract : Exemplar-based inpainting methods involve three critical steps: finding the patch processing order, searching for best matching patches, and estimating the unknown pixels from the best matching patches. The paper addresses each step and first introduces a new patch priority term taking into account the presence of edges in the patch to be filled-in. The paper then presents a method using linear regression based local learning of subspace mapping functions to enhance the search for the nearest neighbors (K-NN) to the input patch in the particular case of inpainting. Several neighbor embedding (NE) methods are then considered for estimating the unknown pixels. The performances of the resulting inpainting algorithms are assessed in two application contexts: object removal and loss concealment. In the loss concealment application, the ground truth is known, hence objective measures (e.g., PSNR) can be used to assess the performances of the different methods. The inpainting results are compared against those obtained with various state-of-the-art solutions for both application contexts.
Type de document :
Article dans une revue
Eurasip Journal on Signal Processing: Image Communication, Hindawi, 2013
Liste complète des métadonnées

https://hal.inria.fr/hal-00876062
Contributeur : Christine Guillemot <>
Soumis le : mercredi 23 octobre 2013 - 15:49:55
Dernière modification le : mercredi 16 mai 2018 - 11:23:38

Identifiants

  • HAL Id : hal-00876062, version 1

Citation

Christine Guillemot, Mehmet Turkan, Olivier Le Meur, Mounira Ebdelli. Object removal and loss concealment using neighbor embedding. Eurasip Journal on Signal Processing: Image Communication, Hindawi, 2013. 〈hal-00876062〉

Partager

Métriques

Consultations de la notice

407