Group Tracking and Behavior Recognition in Long Video Surveillance Sequences

Abstract : This paper makes use of recent advances in group tracking and behavior recognition to process large amounts of video surveillance data from an underground railway station and perform a statistical analysis. The most important advantages of our approach are the robustness to process long videos and the capacity to recognize several and different events at once. This analysis automatically brings forward data about the usage of the station and the various behaviors of groups in different hours of the day. This data would be very hard to obtain without an automatic group tracking and behavior recognition method. We present the results and interpretation of one month of processed data from a video surveillance camera in the Torino subway.
Type de document :
Autre publication
VISAPP - 9th International Joint Conference on Computer Vision, Imaging and Computer Graphics The.. 2014
Liste complète des métadonnées

Littérature citée [13 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00879734
Contributeur : Carolina Garate <>
Soumis le : mardi 14 janvier 2014 - 10:45:06
Dernière modification le : jeudi 11 janvier 2018 - 16:22:52
Document(s) archivé(s) le : mardi 15 avril 2014 - 16:17:51

Fichier

VISAPP2014.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00879734, version 1

Collections

Citation

Carolina Garate, Sofia Zaidenberg, Julien Badie, François Bremond. Group Tracking and Behavior Recognition in Long Video Surveillance Sequences. VISAPP - 9th International Joint Conference on Computer Vision, Imaging and Computer Graphics The.. 2014. 〈hal-00879734〉

Partager

Métriques

Consultations de la notice

667

Téléchargements de fichiers

390