Local Regularity Preserving Signal Denoising I: Hölder Exponents

Abstract : We propose a denoising method that has the property of preserving local regularity, in the sense of local H ̈lder exponent. This approach is fitted to the processing of irregular signals, and gives specially relevant results for those displaying a local form of scale invariance known as localisability. A wavelet decomposition is used to measure and control the local H ̈lder exponent. The main ingredient of the algorithm is an estimator (which is of independent interest) of the time-dependent cut-off scale beyond which wavelet coefficients are mainly due to noise. Based on local regularity estimated from information below the cut-off scale, these small-scale coefficients -which govern the texture- are cor- rected so that the H ̈lder exponent of the denoised signal matches the one of the original signal. The processing is only slightly more com- plex than classical wavelet coefficients thresholding, resulting in fast computing times. Numerical experiments show the good performance of this scheme on various localisable signals.
Type de document :
Pré-publication, Document de travail
submitted. 2013
Liste complète des métadonnées

Littérature citée [23 références]  Voir  Masquer  Télécharger

Contributeur : Lisandro Fermin <>
Soumis le : lundi 4 novembre 2013 - 17:14:15
Dernière modification le : jeudi 29 mars 2018 - 13:36:01
Document(s) archivé(s) le : vendredi 7 avril 2017 - 20:46:14


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-00879754, version 1



Antoine Echelard, Jacques Lévy Véhel. Local Regularity Preserving Signal Denoising I: Hölder Exponents. submitted. 2013. 〈hal-00879754〉



Consultations de la notice


Téléchargements de fichiers