Probabilistic Integration of Intensity and Depth Information for Part-Based Vehicle Detection

Alexandros Makris 1, 2 Mathias Perrollaz 3, * Christian Laugier 3, *
* Auteur correspondant
1 MOISE - Modelling, Observations, Identification for Environmental Sciences
Inria Grenoble - Rhône-Alpes, LJK - Laboratoire Jean Kuntzmann, INPG - Institut National Polytechnique de Grenoble
3 E-MOTION - Geometry and Probability for Motion and Action
Inria Grenoble - Rhône-Alpes, LIG - Laboratoire d'Informatique de Grenoble
Abstract : In this paper, an object class recognition method is presented. The method uses local image features and follows the part-based detection approach. It fuses intensity and depth information in a probabilistic framework. The depth of each local feature is used to weigh the probability of finding the object at a given distance. To train the system for an object class, only a database of images annotated with bounding boxes is required, thus automatizing the extension of the system to different object classes. We apply our method to the problem of detecting vehicles from a moving platform. The experiments with a data set of stereo images in an urban environment show a significant improvement in performance when using both information modalities.
Type de document :
Article dans une revue
IEEE Transactions on Intelligent Transportation Systems, IEEE, 2013, 14 (4), pp.1896-1906. 〈10.1109/TITS.2013.2271113〉
Liste complète des métadonnées

Littérature citée [32 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00905703
Contributeur : Mathias Perrollaz <>
Soumis le : mercredi 8 janvier 2014 - 15:15:38
Dernière modification le : jeudi 11 janvier 2018 - 06:21:48
Document(s) archivé(s) le : mardi 8 avril 2014 - 22:10:54

Fichier

06575156.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

Citation

Alexandros Makris, Mathias Perrollaz, Christian Laugier. Probabilistic Integration of Intensity and Depth Information for Part-Based Vehicle Detection. IEEE Transactions on Intelligent Transportation Systems, IEEE, 2013, 14 (4), pp.1896-1906. 〈10.1109/TITS.2013.2271113〉. 〈hal-00905703〉

Partager

Métriques

Consultations de la notice

361

Téléchargements de fichiers

377