Knowledge-based generalization of metabolic networks: a practical study

Anna Zhukova 1, 2, * David James Sherman 1, 2
* Auteur correspondant
1 MAGNOME - Models and Algorithms for the Genome
Inria Bordeaux - Sud-Ouest, UB - Université de Bordeaux, CNRS - Centre National de la Recherche Scientifique : UMR5800
Abstract : The complex process of genome-scale metabolic network reconstruction involves semi- automatic reaction inference, analysis, and refinement through curation by human experts. Unfortunately, decisions by experts are hampered by the complexity of the network, which can mask errors in the inferred network. In order to aid an expert in making sense out of the thousands of reactions in the organism's metabolism, we developed a method for knowledge-based generalization that provides a higher-level view of the network, highlighting the particularities and essential structure, while hiding the details. In this study, we show the application of this generalization method to 1286 metabolic networks of organisms in Path2Models that describe fatty acid metabolism. We compare the generalized networks and show that we successfully highlight the aspects that are important for their curation and comparison.
Type de document :
Article dans une revue
Journal of Bioinformatics and Computational Biology, World Scientific Publishing, 2014, 12(2) (1441001), 〈10.1142/S0219720014410017〉
Liste complète des métadonnées

Littérature citée [15 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00906911
Contributeur : Anna Zhukova <>
Soumis le : mercredi 20 novembre 2013 - 14:34:15
Dernière modification le : jeudi 11 janvier 2018 - 06:22:12
Document(s) archivé(s) le : vendredi 21 février 2014 - 04:30:58

Fichier

zhukova-jbcb.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Anna Zhukova, David James Sherman. Knowledge-based generalization of metabolic networks: a practical study. Journal of Bioinformatics and Computational Biology, World Scientific Publishing, 2014, 12(2) (1441001), 〈10.1142/S0219720014410017〉. 〈hal-00906911〉

Partager

Métriques

Consultations de la notice

305

Téléchargements de fichiers

378