A sequential particle algorithm that keeps the particle system alive

François Le Gland 1 Nadia Oudjane 2, 3
1 ASPI - Applications of interacting particle systems to statistics
UR1 - Université de Rennes 1, Inria Rennes – Bretagne Atlantique , CNRS - Centre National de la Recherche Scientifique : UMR6074
Abstract : We consider the problem of approximating a nonlinear (unnormalized) Feynman-Kac flow, in the special case where the selection functions can take the zero value. We begin with a list of several important practical situations where this characteristics is present. We study next a sequential particle algorithm, proposed by Oudjane (2000), which guarantees that the particle system does not die. Among other results, we obtain a central limit theorem which relies on the result of Rényi (1957) for the sum of a random number of independent random variables.
Type de document :
Communication dans un congrès
Proceedings of the 13th European Signal Processing Conference, Antalya 2005, Sep 2005, Antalya, Turkey. pp.902-905, 2005, 2. 〈http://ieeexplore.ieee.org/document/7078099/〉
Liste complète des métadonnées

https://hal.inria.fr/hal-00912080
Contributeur : Francois Le Gland <>
Soumis le : dimanche 1 décembre 2013 - 23:13:30
Dernière modification le : mardi 22 mai 2018 - 20:40:03

Identifiants

  • HAL Id : hal-00912080, version 1

Citation

François Le Gland, Nadia Oudjane. A sequential particle algorithm that keeps the particle system alive. Proceedings of the 13th European Signal Processing Conference, Antalya 2005, Sep 2005, Antalya, Turkey. pp.902-905, 2005, 2. 〈http://ieeexplore.ieee.org/document/7078099/〉. 〈hal-00912080〉

Partager

Métriques

Consultations de la notice

226