Oblique Random Forests for 3-D Vessel Detection Using Steerable Filters and Orthogonal Subspace Filtering

Abstract : We propose a machine learning-based framework using oblique random forests for 3-D vessel segmentation. Two different kinds of features are compared. One is based on orthogonal subspace filtering where we learn 3-D eigenspace filters from local image patches that return task optimal feature responses. The other uses a specific set of steerable filters that show, qualitatively,similarities to the learned eigenspace filters, but also allow for explicit parametrization of scale and orientation that we formally generalize to the 3-D spatial context. In this way, steerable filters allow to efficiently compute oriented features along arbitrary directions in 3-D. The segmentation performance is evaluated on four 3-D imaging datasets of the murine visual cortex at a spatial resolution of 0.7μm. Our experiments show that the learning-based approach is able to significantly improve the segmentation compared to conventional Hessian-based methods. Features computed based on steerable filters prove to be superior to eigenfilter-based features for the considered datasets. We further demonstrate that random forests using oblique split directions outperform decision tree ensembles with univariate orthogonal splits
Type de document :
Communication dans un congrès
MICCAI Workshop on Medical Computer Vision (MCV), Oct 2012, Nice, France. 7766, pp.142-154, 2013, Lecture Notes in Computer Science. 〈10.1007/978-3-642-36620-8_15〉
Liste complète des métadonnées

Littérature citée [5 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00912932
Contributeur : Bjoern Menze <>
Soumis le : lundi 2 décembre 2013 - 20:28:25
Dernière modification le : jeudi 11 janvier 2018 - 16:23:40
Document(s) archivé(s) le : lundi 3 mars 2014 - 21:25:25

Identifiants

Collections

Citation

Matthias Schneider, Sven Hirsch, Gabor Szekely, Bruno Weber, Bjoern Menze. Oblique Random Forests for 3-D Vessel Detection Using Steerable Filters and Orthogonal Subspace Filtering. MICCAI Workshop on Medical Computer Vision (MCV), Oct 2012, Nice, France. 7766, pp.142-154, 2013, Lecture Notes in Computer Science. 〈10.1007/978-3-642-36620-8_15〉. 〈hal-00912932〉

Partager

Métriques

Consultations de la notice

283

Téléchargements de fichiers

386