A copula to handle tail dependence in high dimension

Gildas Mazo 1, * Stephane Girard 1, * Florence Forbes 1, *
* Auteur correspondant
1 MISTIS - Modelling and Inference of Complex and Structured Stochastic Systems
Inria Grenoble - Rhône-Alpes, LJK - Laboratoire Jean Kuntzmann, INPG - Institut National Polytechnique de Grenoble
Abstract : The concept of copula is a useful tool to model multivariate distributions but the construction of tail dependent high dimensional copulas remains a challenging problem. We propose a new copula constructed by introducing a latent factor. Conditional independence with respect to this factor and the use of a nonparametric class of bivariate copulas lead to interesting properties like explicitness, flexibility and parsimony. We propose a pairwise moment-based inference procedure and prove asymptotic normality of our estimator. Finally we illustrate our model on simulated and real data.
Type de document :
Communication dans un congrès
ERCIM 2013 - 6th International Conference of the ERCIM WG on Computational and Methodological Statistics, Dec 2013, London, United Kingdom. 2013
Liste complète des métadonnées

https://hal.inria.fr/hal-00915690
Contributeur : Stephane Girard <>
Soumis le : lundi 9 décembre 2013 - 11:36:05
Dernière modification le : lundi 14 juillet 2014 - 20:47:27

Identifiants

  • HAL Id : hal-00915690, version 1

Collections

Citation

Gildas Mazo, Stephane Girard, Florence Forbes. A copula to handle tail dependence in high dimension. ERCIM 2013 - 6th International Conference of the ERCIM WG on Computational and Methodological Statistics, Dec 2013, London, United Kingdom. 2013. <hal-00915690>

Partager

Métriques

Consultations de la notice

200