Mathematical analysis of a discrete fracture model coupling Darcy flow in the matrix with Darcy-Forchheimer flow in the fracture

Abstract : We consider a model for flow in a porous medium with a fracture in which the flow in the fracture is governed by the Darcy-Forchheimer law while that in the surrounding matrix is governed by Darcy's law. We give an appropriate mixed, variational formulation and show existence and uniqueness of the solution. To show existence we give an analogous formulation for the model in which the Darcy-Forchheimer law is the governing equation throughout the domain. We show existence and uniqueness of the solution and show that the solution for the model with Darcy's law in the matrix is the weak limit of solutions of the model with the Darcy-Forchheimer law in the entire domain when the Forchheimer coefficient in the matrix tends toward zero.
Type de document :
Rapport
[Research Report] RR-8443, INRIA. 2013, pp.23
Liste complète des métadonnées

Littérature citée [20 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00922962
Contributeur : Jean Roberts <>
Soumis le : mardi 31 décembre 2013 - 17:20:17
Dernière modification le : mardi 17 avril 2018 - 11:26:57
Document(s) archivé(s) le : lundi 31 mars 2014 - 22:21:06

Fichiers

RR-8443.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00922962, version 1
  • ARXIV : 1401.0193

Collections

Citation

Peter Knabner, Jean Roberts. Mathematical analysis of a discrete fracture model coupling Darcy flow in the matrix with Darcy-Forchheimer flow in the fracture. [Research Report] RR-8443, INRIA. 2013, pp.23. 〈hal-00922962〉

Partager

Métriques

Consultations de la notice

313

Téléchargements de fichiers

435