Analysis of a New Model of Cell Population Dynamics in Acute Myeloid Leukemia

Abstract : A new mathematical model of the cell dynamics in Acute Myeloid Leukemia (AML) is considered which takes into account the four different phases of the proliferating compartment. The dynamics of the cell populations are governed by transport partial differential equations structured in age and by using the method of characteristics, we obtain that the dynamical system of equation can be reduced to two coupled nonlinear equations with four internal sub-systems involving distributed delays. Equilibrium and local stability analysis of this model are performed and several simulations illustrate the results.
Type de document :
Chapitre d'ouvrage
Tomáš Vyhlídal and Jean-François Lafay and Rifat Sipahi. Delay Systems : From Theory to Numerics and Applications, 1, Springer, pp.315-328, 2014, Advances in Delays and Dynamics, 978-3-319-01695-5. 〈10.1007/978-3-319-01695-5_23〉
Liste complète des métadonnées

https://hal.inria.fr/hal-00932779
Contributeur : José Luis Emanuelle Avila Alonso <>
Soumis le : vendredi 17 janvier 2014 - 16:15:54
Dernière modification le : vendredi 25 mai 2018 - 12:02:07

Identifiants

Collections

Citation

José Luis Avila Alonso, Catherine Bonnet, Jean Clairambault, Hitay Ozbay, Silviu-Iulian Niculescu, et al.. Analysis of a New Model of Cell Population Dynamics in Acute Myeloid Leukemia. Tomáš Vyhlídal and Jean-François Lafay and Rifat Sipahi. Delay Systems : From Theory to Numerics and Applications, 1, Springer, pp.315-328, 2014, Advances in Delays and Dynamics, 978-3-319-01695-5. 〈10.1007/978-3-319-01695-5_23〉. 〈hal-00932779〉

Partager

Métriques

Consultations de la notice

801