On relative errors of floating-point operations: optimal bounds and applications

Abstract : Rounding error analyses of numerical algorithms are most often carried out via repeated applications of the so-called standard models of floating-point arithmetic. Given a round-to-nearest function fl and barring underflow and overflow, such models bound the relative errors E 1 (t) = |t − fl(t)|/|t| and E 2 (t) = |t − fl(t)|/|fl(t)| by the unit roundoff u. This paper investigates the possibility and the usefulness of refining these bounds, both in the case of an arbitrary real t and in the case where t is the exact result of an arithmetic operation on some floating-point numbers. We show that E 1 (t) and E 2 (t) are optimally bounded by u/(1 + u) and u, respectively, when t is real or, under mild assumptions on the base and the precision, when t = x ± y or t = xy with x, y two floating-point numbers. We prove that while this remains true for division in base β > 2, smaller, attainable bounds can be derived for both division in base β = 2 and square root. This set of optimal bounds is then applied to the rounding error analysis of various numerical algorithms: in all cases, we obtain significantly shorter proofs of the best-known error bounds for such algorithms, and/or improvements on these bounds themselves.
Type de document :
Article dans une revue
Mathematics of Computation, American Mathematical Society, 2016, 〈10.1090/mcom/3234〉
Liste complète des métadonnées

Littérature citée [18 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00934443
Contributeur : Claude-Pierre Jeannerod <>
Soumis le : jeudi 3 novembre 2016 - 09:37:58
Dernière modification le : mardi 22 novembre 2016 - 15:21:28
Document(s) archivé(s) le : samedi 4 février 2017 - 12:44:11

Fichier

JeannerodRump2016.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Claude-Pierre Jeannerod, Siegfried M. Rump. On relative errors of floating-point operations: optimal bounds and applications. Mathematics of Computation, American Mathematical Society, 2016, 〈10.1090/mcom/3234〉. 〈hal-00934443v4〉

Partager

Métriques

Consultations de
la notice

293

Téléchargements du document

154