Saliency-based modeling of acoustic scenes using sparse non-negative matrix factorization

Abstract : The modelling of auditory scenes is a challenging task in Computational Auditory Scene Analysis. A method based on sparse Non-negative Matrix Factorization that can be used with no prior knowledge of the audio content to establish the similarity between scenes is proposed. The method is evaluated on a corpus of soundscapes of train stations issued from a perceptual study and results are compared with the human perception. The proposed method, by being able to focus on salient events within the scene, achieves better performances than a state-of-the-art Bag-of-Frames approach though not reaching the human performances.
Type de document :
Communication dans un congrès
Workshop on Image and Audio Analysis for Multimedia Interactive, Jul 2013, Paris, France. 2013
Liste complète des métadonnées

Littérature citée [9 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00940075
Contributeur : Arshia Cont <>
Soumis le : vendredi 31 janvier 2014 - 12:07:08
Dernière modification le : jeudi 11 janvier 2018 - 06:24:15
Document(s) archivé(s) le : dimanche 9 avril 2017 - 04:18:32

Fichier

Cauchi13-SparseSliencyNMG.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : hal-00940075, version 1

Collections

Citation

Benjamin Cauchi, Mathieu Lagrange, Nicolas Misdariis, Arshia Cont. Saliency-based modeling of acoustic scenes using sparse non-negative matrix factorization. Workshop on Image and Audio Analysis for Multimedia Interactive, Jul 2013, Paris, France. 2013. 〈hal-00940075〉

Partager

Métriques

Consultations de la notice

220

Téléchargements de fichiers

136