Performance of ESPRIT for estimating mixtures of complex exponentials modulated by polynomials

Abstract : High Resolution (HR) methods are known to provide accurate frequency estimates for discrete spectra. The Polynomial Amplitude Complex Exponentials (PACE) model, also called quasipolynomial model in the literature, was presented as the most general model tractable by HR methods. A subspace-based estimation scheme was recently proposed, derived from the classical ESPRIT algorithm. In this paper, we focus on the performance of this estimator. We first present some asymptotic expansions of the estimated parameters, obtained at the first order under the assumption of a high signal-to-noise ratio. Then the performance of the generalized ESPRIT algorithm for estimating the parameters of this model is analyzed in terms of bias and variance, and compared to the Cramér-Rao bounds. This performance is studied in an asymptotic context, and it is proved that the efficiency of undamped single poles estimators is close to the optimality. Moreover, our results show that the best performance is obtained for a proper dimensioning of the data. To illustrate the practical capabilities of the generalized ESPRIT algorithm, we finally propose an application to ARMA filter synthesis, in the context of system conversion from continuous time to discrete time.
Type de document :
Article dans une revue
IEEE_J_SP, IEEE, 2008, 56 (2), pp.492--504
Liste complète des métadonnées

Littérature citée [35 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00945195
Contributeur : Roland Badeau <>
Soumis le : lundi 24 mars 2014 - 16:14:10
Dernière modification le : jeudi 11 janvier 2018 - 06:23:38
Document(s) archivé(s) le : mardi 24 juin 2014 - 10:41:47

Fichier

ieee-tsp-07.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00945195, version 1

Citation

Roland Badeau, Gaël Richard, Bertrand David. Performance of ESPRIT for estimating mixtures of complex exponentials modulated by polynomials. IEEE_J_SP, IEEE, 2008, 56 (2), pp.492--504. 〈hal-00945195〉

Partager

Métriques

Consultations de la notice

344

Téléchargements de fichiers

207