Combining complementary edge, point and color cues in model-based tracking for highly dynamic scenes

Antoine Petit 1 Eric Marchand 1 Keyvan Kanani 2
1 Lagadic - Visual servoing in robotics, computer vision, and augmented reality
CRISAM - Inria Sophia Antipolis - Méditerranée , Inria Rennes – Bretagne Atlantique , IRISA-D5 - SIGNAUX ET IMAGES NUMÉRIQUES, ROBOTIQUE
Abstract : This paper focuses on the issue of estimating the complete 3D pose of the camera with respect to a complex object, in a potentially highly dynamic scene, through model- based tracking. We propose to robustly combine complementary geometrical edge and point features with color based features in the minimization process. A Kalman filtering and pose pre- diction process is also suggested to handle potential large inter- frame motions. In order to deal with complex 3D models, our method takes advantage of hardware acceleration. Promising results, outperforming classical state-of-art approaches, have been obtained on various real and synthetic image sequences, with a focus on space robotics applications.
Type de document :
Communication dans un congrès
IEEE Int. Conf. on Robotics and Automation, ICRA'14, Jun 2014, Hong-Kong, Hong Kong SAR China. 2014
Liste complète des métadonnées

Littérature citée [22 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00949197
Contributeur : Eric Marchand <>
Soumis le : mercredi 19 février 2014 - 11:43:15
Dernière modification le : mercredi 16 mai 2018 - 11:23:03
Document(s) archivé(s) le : lundi 19 mai 2014 - 12:10:10

Fichier

2014_icra_petit.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00949197, version 1

Citation

Antoine Petit, Eric Marchand, Keyvan Kanani. Combining complementary edge, point and color cues in model-based tracking for highly dynamic scenes. IEEE Int. Conf. on Robotics and Automation, ICRA'14, Jun 2014, Hong-Kong, Hong Kong SAR China. 2014. 〈hal-00949197〉

Partager

Métriques

Consultations de la notice

579

Téléchargements de fichiers

188