Robust Surface Reconstruction via Triple Sparsity

Abstract : Reconstructing a surface/image from corrupted gradient fields is a crucial step in many imaging applications where a gradient field is subject to both noise and unlocalized outliers, resulting typically in a non-integrable field. We present in this paper a new optimization method for robust surface reconstruction. The proposed formulation is based on a triple sparsity prior : a sparse prior on the residual gradient field and a double sparse prior on the surface it- self. We develop an efficient alternate minimization strategy to solve the proposed optimization problem. The method is able to recover a good quality surface from severely cor- rupted gradients thanks to its ability to handle both noise and outliers. We demonstrate the performance of the pro- posed method on synthetic and real data. Experiments show that the proposed solution outperforms some existing meth- ods in the three possible cases : noise only, outliers only and mixed noise/outliers.
Type de document :
Communication dans un congrès
CVPR 2014, Jun 2014, Columbus, Ohio, United States. 2014
Liste complète des métadonnées

Littérature citée [17 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00951627
Contributeur : H. Yahia <>
Soumis le : vendredi 4 avril 2014 - 14:29:13
Dernière modification le : mercredi 3 janvier 2018 - 14:18:08
Document(s) archivé(s) le : vendredi 4 juillet 2014 - 12:56:37

Fichier

cvpr2014_final_hal.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00951627, version 1

Collections

Citation

Hicham Badri, Hussein Yahia, Driss Aboutajdine. Robust Surface Reconstruction via Triple Sparsity. CVPR 2014, Jun 2014, Columbus, Ohio, United States. 2014. 〈hal-00951627〉

Partager

Métriques

Consultations de la notice

596

Téléchargements de fichiers

1016