Direct model predictive control

Jean-Joseph Christophe 1, 2 Jérémie Decock 1, 2 Olivier Teytaud 1, 2
1 TAO - Machine Learning and Optimisation
LRI - Laboratoire de Recherche en Informatique, UP11 - Université Paris-Sud - Paris 11, Inria Saclay - Ile de France, CNRS - Centre National de la Recherche Scientifique : UMR8623
Abstract : Due to simplicity and convenience, Model Predictive Control, which consists in optimizing future decisions based on a pessimistic deterministic forecast of the random processes, is one of the main tools for stochastic control. Yet, it suffers from a large computation time, unless the tactical horizon (i.e. the number of future time steps included in the optimization) is strongly reduced, and lack of real stochasticity handling. We here propose a combination between Model Predictive Control and Direct Policy Search.
Type de document :
Communication dans un congrès
European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN), Apr 2014, Bruges, Belgium. 2014
Liste complète des métadonnées


https://hal.inria.fr/hal-00958192
Contributeur : Jérémie Decock <>
Soumis le : mardi 11 mars 2014 - 18:51:43
Dernière modification le : jeudi 9 février 2017 - 16:00:18
Document(s) archivé(s) le : mercredi 11 juin 2014 - 13:25:28

Fichiers

dpsandmpc.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00958192, version 1

Collections

Citation

Jean-Joseph Christophe, Jérémie Decock, Olivier Teytaud. Direct model predictive control. European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN), Apr 2014, Bruges, Belgium. 2014. <hal-00958192>

Partager

Métriques

Consultations de
la notice

413

Téléchargements du document

311