Reed-Muller codes associated to projective algebraic varieties

Abstract : The classical generalized Reed-Muller codes introduced by Kasami, Lin and Peterson [5], and studied also by Delsarte, Goethals and Mac Williams [2], are defined over the affine space An(Fq) over the finite field Fq with q elements. Moreover Lachaud [6], following Manin and Vladut [7], has considered projective Reed-Muller codes, i.e. defined over the projective space Pn(Fq). In this paper, the evaluation of the forms with coefficients in the finite field Fq is made on the points of a projective algebraic variety V over the projective space Pn(Fq). Firstly, we consider the case where V is a quadric hypersurface, singular or not, Parabolic, Hyperbolic or Elliptic. Some results about the number of points in a (possibly degenerate) quadric and in the hyperplane sections are given, and also is given an upper bound of the number of points in the intersection of two quadrics. In application of these results, we obtain Reed-Muller codes of order 1 associated to quadrics with three weights and we give their parameters, as well as Reed-Muller codes of order 2 with their parameters. Secondly, we take V as a hypersurface, which is the union of hyperplanes containing a linear variety of codimension 2 (these hypersurfaces reach the Serre bound). If V is of degree h, we give parameters of Reed-Muller codes of order d < h, associated to V.
Type de document :
Chapitre d'ouvrage
Stichtenoth, Henning and Tsfasman, MichaelA. Coding Theory and Algebraic Geometry, 1518, Springer Berlin Heidelberg, pp.4-17, 1992, 978-3-540-55651-0. 〈10.1007/BFb0087988〉
Liste complète des métadonnées

Littérature citée [11 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00973776
Contributeur : Yves Aubry <>
Soumis le : vendredi 4 avril 2014 - 15:05:45
Dernière modification le : jeudi 18 janvier 2018 - 01:51:54
Document(s) archivé(s) le : vendredi 4 juillet 2014 - 13:00:27

Fichier

Aubry_LectureNotesInMaths.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

Collections

Citation

Yves Aubry. Reed-Muller codes associated to projective algebraic varieties. Stichtenoth, Henning and Tsfasman, MichaelA. Coding Theory and Algebraic Geometry, 1518, Springer Berlin Heidelberg, pp.4-17, 1992, 978-3-540-55651-0. 〈10.1007/BFb0087988〉. 〈hal-00973776〉

Partager

Métriques

Consultations de la notice

145

Téléchargements de fichiers

173