A Gentle Non-Disjoint Combination of Satisfiability Procedures (Extended Version)

Paula Chocron 1, 2 Pascal Fontaine 3 Christophe Ringeissen 2
2 CASSIS - Combination of approaches to the security of infinite states systems
FEMTO-ST - Franche-Comté Électronique Mécanique, Thermique et Optique - Sciences et Technologies, Inria Nancy - Grand Est, LORIA - FM - Department of Formal Methods
3 VERIDIS - Modeling and Verification of Distributed Algorithms and Systems
Inria Nancy - Grand Est, LORIA - FM - Department of Formal Methods
Abstract : A satisfiability problem is often expressed in a combination of theories, and a natural approach consists in solving the problem by combining the satisfiability procedures available for the component theories. This is the purpose of the combination method introduced by Nelson and Oppen. However, in its initial presentation, the Nelson-Oppen combination method requires the theories to be signature-disjoint and stably infinite (to guarantee the existence of an infinite model). The notion of gentle theory has been introduced in the last few years as one solution to go beyond the restriction of stable infiniteness, but in the case of disjoint theories. In this paper, we adapt the notion of gentle theory to the non-disjoint combination of theories sharing only unary predicates (plus constants and the equality). Like in the disjoint case, combining two theories, one of them being gentle, requires some minor assumptions on the other one. We show that major classes of theories, i.e.\ Löwenheim and Bernays-Schönfinkel-Ramsey, satisfy the appropriate notion of gentleness introduced for this particular non-disjoint combination framework.
Type de document :
Rapport
[Research Report] RR-8529, INRIA. 2014
Liste complète des métadonnées

Littérature citée [26 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00985135
Contributeur : Christophe Ringeissen <>
Soumis le : mardi 29 avril 2014 - 12:05:32
Dernière modification le : mardi 13 décembre 2016 - 15:40:42
Document(s) archivé(s) le : mardi 29 juillet 2014 - 12:15:48

Fichier

RR-8529.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00985135, version 1

Citation

Paula Chocron, Pascal Fontaine, Christophe Ringeissen. A Gentle Non-Disjoint Combination of Satisfiability Procedures (Extended Version). [Research Report] RR-8529, INRIA. 2014. 〈hal-00985135〉

Partager

Métriques

Consultations de la notice

300

Téléchargements de fichiers

174