Bayesian Inverse Reinforcement Learning for Modeling Conversational Agents in a Virtual Environment.

Lina Maria Rojas Barahona 1 Christophe Cerisara 1
1 SYNALP - Natural Language Processing : representations, inference and semantics
LORIA - NLPKD - Department of Natural Language Processing & Knowledge Discovery
Abstract : This work proposes a Bayesian approach to learn the behavior of hu- man characters that give advice and help users to complete tasks in a situated environment. We apply Bayesian Inverse Reinforcement Learning (BIRL) to in- fer this behavior in the context of a serious game, given evidence in the form of stored dialogues provided by experts who play the role of several conversational agents in the game. We show that the proposed approach converges relatively quickly and that it outperforms two baseline systems, including a dialogue man- ager trained to provide "locally" optimal decisions.
Type de document :
Communication dans un congrès
Conference on Intelligent Text Processing and Computational Linguistics, Apr 2014, Kathmandu, Nepal. Springer, Lecture Notes on Computer Science, 2014
Liste complète des métadonnées

Littérature citée [20 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01002361
Contributeur : Lina Maria Rojas Barahona <>
Soumis le : vendredi 6 juin 2014 - 09:08:48
Dernière modification le : mardi 24 avril 2018 - 13:30:31
Document(s) archivé(s) le : samedi 6 septembre 2014 - 11:06:18

Fichier

birl_RojasCerisara.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01002361, version 1

Collections

Citation

Lina Maria Rojas Barahona, Christophe Cerisara. Bayesian Inverse Reinforcement Learning for Modeling Conversational Agents in a Virtual Environment.. Conference on Intelligent Text Processing and Computational Linguistics, Apr 2014, Kathmandu, Nepal. Springer, Lecture Notes on Computer Science, 2014. 〈hal-01002361〉

Partager

Métriques

Consultations de la notice

585

Téléchargements de fichiers

557