Strategies to learn computationally efficient and compact dictionaries

Luc Le Magoarou 1 Rémi Gribonval 1
1 PANAMA - Parcimonie et Nouveaux Algorithmes pour le Signal et la Modélisation Audio
Inria Rennes – Bretagne Atlantique , IRISA-D5 - SIGNAUX ET IMAGES NUMÉRIQUES, ROBOTIQUE
Abstract : Dictionary learning is a branch of signal processing and machine learning that aims at expressing some given training data matrix as the multiplication of two factors: one dense matrix called dictionary and one sparse matrix being the representation of the data in the dictionary. The sparser the representation, the better the dictionary. However, manipulating the dictionary as a dense matrix can be computationally costly both in the learning process and later in the usage of this dictionary, thus limiting dictionary learning to relatively small-scale problems. In this paper we consider a general structure of dictionary allowing faster manipulation, and give an algorithm to learn such dictionaries over training data, as well as preliminary results showing the interest of our approach.
Type de document :
Document associé à des manifestations scientifiques
International Traveling Workshop on Interactions between Sparse models and Technology (iTWIST), Aug 2014, Namur, Belgium
Liste complète des métadonnées

Littérature citée [12 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01010766
Contributeur : Luc Le Magoarou <>
Soumis le : vendredi 20 juin 2014 - 14:18:51
Dernière modification le : jeudi 15 novembre 2018 - 11:58:45
Document(s) archivé(s) le : samedi 20 septembre 2014 - 10:56:40

Fichier

iTWIST2014_FINAL.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01010766, version 1

Citation

Luc Le Magoarou, Rémi Gribonval. Strategies to learn computationally efficient and compact dictionaries. International Traveling Workshop on Interactions between Sparse models and Technology (iTWIST), Aug 2014, Namur, Belgium. 〈hal-01010766〉

Partager

Métriques

Consultations de la notice

1294

Téléchargements de fichiers

145